Developer-first Gradle builds

Sterling Greene & Paul Merlin

Agenda

Challenges

Maintenance and understanding
Developer first builds []

Vision and current state

Demos

Don’t say it, declare it
What'’s next? []
A peak into the future

Who are we?

K{=E

speaker { speaker {
name = "Paul Merlin name = "Sterling Greene"
company = "Gradle" company = "
joined = 2015 joined = 2014
currently = "Declarative Gradle currently = "Declarative Gradle”
previously = "Performance, Kotlin DSL, Figuration Cache previously = "JVM, Core, Native, Bulild Cache
github = "eskatos github = "big-qguy
mastodon @eskatos@mastodon.social X @argfile”

Gradle

Gradle ﬁ |

1&
(o, gradleware @ gf‘OdL@ ﬂ

Gradle

Since 2008, our mission is to accelerate developer productivity.

x

K{=E

0 Gradle Build Tool

Apache licenced sofware build tool

With 50M+ monthly downloads and one of the top 20 popular open
source projects according to TechCrunch.

UEVELOCITY.

Develocity, commercial product, is the first Developer Productivity 4
Engineering (DPE) integrated solution.

Compare build scans

Export build data
to other systems

[
o]~ |——
OE
HE
Search for build scans
in vour browser

WView build scans
in your browser

- B r Gradle Enterprise
e

A sl
Rec I:II:I eloper and CI builds

A 4 v

Gradle Android

Maven Bazel Scala

Build Scan® L

A permanent record of what happens during a build. N ‘

DEYLCLOCOITY B W gradle clean sanityCheck May 22 2024 09:20:13 CEST L= Build Scans) _ Sign in

i ‘[C.‘-CI—ED. [ﬂ [EI':‘ :k] [QuickFeedbackLinuxOnky |[SanityC heck J

E Consale log !‘:I:;l.:::llll-::-l':,- Al D201 5 CEST, Tinishied Loy ol O%:31:35 CEST ﬂ' ',fll
Gradle 8.9-202404 17001 201+0000, Develocity plugin 2.17.3

=,

Failure Compasite build 23 incleded builds)

Build dependencies
30 build deprecations

@ Deprecations 2 ol Types Scans @ CHCompalefd] Bcon @ Gil Conunic Scans 2 Sourcs @ TeamCily Boild |
1
e Timeline Explye conzole lop]
W Porformance
EEI Tests)
O failures
,.v,-i-:, Projects)))))
This Buitd did net condain sny failures
ﬁ Dependencies
Q.IJ
o

Plugins

o
1

Listener registrabion using Gradleaddlistener) has been deprecated,

Listener registration using Gradleuseloepe] has been depracated,

Switches Build service "HotlinToolingDiagnosticsCollector_ 1035134214 is being used by task build-logicchinary -compatibility:check Kot inGradl e PluginConhgurationErrors' without the cormesoonding declaration via 'Task#uscsService' This behavior ha
Infrashructure Build service "KollinToalingDingnosbicsCollecior_1055133818° is beirg used by Lask shuild-legic:build-init-semolescheckiKetlinGedlePluginConhigurabion Lrears” without the corresponding declaration via "TaskdysesService!, This bebavior bas b
Build service 'KotlinTealingDiagneaticsCallactor_ 10551344140 is being usad by task build-legic:build-update-utls:checkEatlinGradliePlug nCenfiguraton Emrars without the corresponding declaration via Task#usesSerdice!. This behavior has b
Build service "HotlirToolingDiagnosticsCollector_ 1035134214 is being used by task build-logic-buildguality:check KotlinGradlePluginConfgurationErrors' without the corresponding declaration via 'Task#uscsService' This bohevior has been d

Custom wvalues

3
|

2 [0

“U} See before and after

. . Cxpbore btk depracbioes
EZ) Compare Build Scan)

12297 tasks, 844 transfomms scscuted in 197 projects in Tm 225, with 4176 avelded tasks saving 1h Im 0.338s

:architecture-test:checkBinaryCompatibility 18.540s
docsjavadocal| 13,559
esformancesaritslmpPerfamrmancesrerarioRenniians A.ASDs
toaling-apitaclingApiShaded lar 7.1%9
architecturc-testesrectGradleApilng 5.572%
il -logle:hullequaliby:enmpileTest Kotlin - FROM-CACHE I I

Explore dmeline

1m 22s total build time

-

Initialization & configuration 3.1
Execiution 48.95

e

H

o

Developer Productivity Engineering

DPE is an emerging software practice that relies on acceleration 1
technologies and data analysis to improve developer productivity. \

THE DEVELOPER PRODUCTIVITY Gradle
ENGINEERING HANDBOOK

vity Engineering

: ..fJ . .,J g 4 IIUUEL
.
- D pown! _
i, _ - w9 »F
_ Ay T oa I

gradle.com/developer-productivity-engineering DPE Lowdown - Youtube Playlist
DPE Showdown - Youtube Playlist

NEW: DPE University []
X

DPE University

e Free courses at dpeuniversity.gradle.com
e 6 Gradle courses - from Beginner to Advanced levels

e More courses on Maven, Develocity etc...

Challenges []

Gradle is flexible and extensible
Drawbacks

K{=E

Challenges []

Gradle is flexible and extensible

Drawbacks
e Build scripts speak Gradle and not your domain.
e Build scripts can be a mess.

e Tooling can only help so much.

Challenges - Jeg taler Gradle
build.gradle.kts

plugins {
java

}

repositories {
mavenCentrall()

}

dependencies {
testImplementation(libs.junit.jupiter)

testRuntimeOnly("org.junit.platform:junit-platform

api(libs.commons.math3)

implementation(libs.guava)

1
r

tasks.named<Test=>("test") {
useJUnitPlatform()
t

Challenges - @
build.gradle.kts

plugins {
1d{ | 1
h;

apply { _ |
from("dependencies.gradle.kts")

}

tasks.named<Test=("test") {
uselUnitPlatform()
JjvmArgs "-Dsamples=

. 500 lines

tasks.named<Test>("test") {
useJUnitPlatform {
includeTags("Fast")

}

Challenges - Gauntlet for toolability
build.gradle.kts

android {
namespace = "com.example.

}

dependenciles {
testImplementation(libs.junit. jupiter)
testRuntimeOnly(“"org.junit.platform:junit-platform-launcher")

apl(libs.commons.math3)

if ('buildingForJaval7()) {
implementation(libs.javal7CompatibilityShim)

}

implementation(libs.guava)

listOf("foo", "bar").forEach { name ->

implementation("org: 11.0")

}

1
r

fun buildingForJaval7() = JavaVersion.current() == JavaVersion.VERSION 17

Questions

e Who has needed a flexible and extensible build system?

e \Who has seen a complex build?

Overcoming challenges
I

Overcoming challenges - Definitions

e Software Definition
= What needs to be built
» Kind of software, languages, target platforms
» Dependencies, toolchains, quality checks etc...
e Build Logic
= How the software will be built
= Adds new capabilities, integrate tools

= Supplies convention to the software definition

Overcoming challenges - Recommendations

Gradle can look declarative

e Keep build logic in plugins
e Give your convention plugins meaningful names

e Keep your build scripts simple - condition and loop free

Overcoming challenges -]
build.gradle.kts

plugins {
1d("backend-Llibrary-conventions")

dependenciles {
apl(libs.commons.math3)
implementation(libs.guava)
'

But this might not be enough.

Developer-first builds []

Vision

O
L=
L=

&
Elegant and extensible declarative build language that allows developers
to describe any kind of software in a clear and understandable way.

Developer-first builds - Vision

e Extensible, flexible
e Declarative ®[

e Clear and understandable &

=2 8

Software Developers & Build Engineeﬁ.é

e Software Developers - Majority in most teams

0.0

® Improve software by shipping features, fixing bugs ...
e Build Engineers - Frequent in larger teams

B Maintain the build, make developers productive

o ¢ [{Frequentinsmaller teams

B Who's the Gradle expert?

Software Definition vs Build Logic ‘Lé

e Software Definition - What needs to be built
= Meant to be read and modified by Software Developers
= Resides in settings and projects definitions

e Build Logic - How the software will be built
= Meant to be read and modified by Build Engineers

= Resides in plugins (local or external)

Developer-first builds - Tactical goals

e Separate software definition and build logic
with a declarative DSL

e Match the software definition to the software domain

e Excellent Tooling and IDE Integration

Developer-first builds []

Current state

Developer-first builds - Teams
We work on this together

e Multiple teams at Gradle (DSL, Software, IDE)
e Android Studio team at Google

e |ntelliJ, Kotlin & Amper teams at JetBrains

Developer-first builds - Disclaimers

e These are experiments.
e Prototypes require a Gradle nightly.
e |DE features require an Android Studio nightly.

e Prototypes are changing all the time and are not ready for
production use.

Developer-first builds - Declarative

Configuration Language

e Purely declarative
e Small subset of the Kotlin language
e Fast andresilient parser

e Schemas & Documents

Developer-first builds - Tooling

e Get projects schemas via Gradle’s Tooling API

m After build settings are evaluated
m Before configuring any project

e | oad documents for project definitions
= Validate using the schema
= DOM-like API

e Thisis data!
= JSON Serialization

Developer-first builds - Performance

./gradlew assemble

]

First use of a 500 projects build
80

60

40

Seconds

20

Kotlin Groovy Declarative

DSL

K{=E

Current prototypes - Software definition

Software types for Kotlin (KMP), JVM (Kotlin, Java) & Android
m Software type is a high level model for the ecosystem

Wraps around existing plugins

Limited configurability just to explore/experiment

No plugin application in project DCL files

K{=E

Current prototypes - Reusable conventions

e Reusable conventions support sharing common configuration
m Properties
» Dependencies

e Declared at the top-level settings DCL file

Current prototypes - Software types - Demo
settings.gradle.dcl

conventions {
kotlinJvmLibrary {

javaVersion = 21

}
}

build.gradle.dcl

kotlinJvmLibrary {

dependencies {
api(project(":core:common"))

}

Demo

—$ B

e
Questions A

e Who has tried to automate changing the build definition?

e Who would like to clicky-click in a Ul to understand a build and
change it?

What's next? []

A peak into the future

K{=E

What's next? - Mutations / Refactorings

e Gradle guided changes available from tooling and command-
line

e Integrated with IDE workflow (preview/diff, undo)
e Provided out of the box by Gradle or registered by plugins

K{=E

What's next? - Mutations / Refactorings

Examples

e Upgrade an external dependency
e Add Compose to this project
e Update Gradle from 9.0 -» 9.1

e Refactor this project to use non-deprecated properties

K{=E

What’s next? - Quick and resilient IDE sync

e Progressively provide more context
Instead of a monolithic sync step.

e Avoid slow recompilation of build scripts when build logic
changes.

Reparsing declarative files is fast.

e Errorsinadeclarative file don’t need to be fatal to sync
Best effort: know what "kind" of project it is at least.

K{=E

What’'s next? - Other IDEs

 \We want all features to be available to most IDEs
e We're working with JetBrains and Google for their IDEs
e Our IDE team is exploring
= LSP language server & BSP build server
= plugins for both Eclipse/Buildship and Visual Studio Code
e | SP & BSP should allow to add support in many other IDEs

K{=E

What's next? - Defining new Software types

e Multiple conventions for the same software type
e Restricted configurability for a software type

e Entirely new software types/ecosystems

What’s next? - Multiple Software type
conventions

For example, a build with two different KMP libraries.

settings.gradle.dcl

softwareTypes {
legacylLibrary {

}

nextGenerationLibrary {
_ i

compose {

What's next? - Software type conventions

Some reusable conventions cross software type boundaries.

For example, Compose can be used by KMP or Android.

settings.gradle.dcl

conventions {
compose {
kotlinCompilerExtensionVersion = "1.5.12"
_ }
¥
softwareTypes {
kmpLibrary {

compose = conventions.compose

}
androidLibrary {
compose = conventions.compose

}

Where do we want to go?
I

K{=E

Where dowe wanttogo? []

Elegant and extensible declarative build language that allows developers
to describe any kind of software in a clear and understandable way.

and more...

e Pluggable mutations/refactorings

e Excellent IDE support

K{=E

Transition

e You can mix imperative and declarative in a build
e Gradle imperative DSLs don't go away
e Software-types will be usable from imperative DSLs

e We are exploring ways and tooling for incremental migration

K{=E

Road Map - Highly speculative

e First EAP this summer
= Demonstrating what we just talked about
» Early feedback from the community
e 2024-H?2
= More EAPs towards the end of the year
= More features
= Addressing collected feedback

m Further feedback from the community

Call to action
i

We need your help and feedback []

e Visit declarative.gradle.org site
e Explore gradle/declarative-gradle repository

e Join Gradle’'s Community Slack

#declarative-gradle

e Share your thoughts and use cases with us

Thank you!

Don’t forget to vote!

Come talk with us at our booth

speaker {
name = "Sterling Greene"
company = "Gradle
joined = 2014
currently = "Declarative Gradle"
previously = "JVM, Core, Native, Build Cache"
github = "big-guy
X = "@argfile"
}
speaker {
name = "Paul Merlin"
company = "Gradle
joined = 2015
currently = "Declarative Gradle"”
previously = "Performance, Kotlin D5L, Configuration Cache”
github = "eskatos
mastodon = "@eskatos@mastodon.social”
}

@
@ JETBRAINS

Get the latest schedule
and vote for your
favourite sessions with
the KotlinConf App!

B:ﬂ-.] ll"

<}

SIa-L0 WWITLED AT 1 .

- Plan mu tistep refactr::rings 50 that
continues to build and run.

- Migrate from mutable objects to
immutable data classes, functions, a
machines modeled with sealed class

hierarchies.

Migrate a layered or Hexagon softv
architecture to - Functional Core, Im

Shell.

- Use Al to improve refactoring prodi

Please rate the talk!

® ©

51/51

